Review: Significant Figures, Error and Uncertainty

Propagating Error: Rules

1.Addition and Subtraction: Add absolute Uncertainties

$$(A \pm \Delta A) \pm (B \pm \Delta B) = (A \pm B) \pm (\Delta A + \Delta B)$$
2. Multiplication and Division
For example

$$(A \pm \Delta A) \times (B \pm \Delta B) = C \pm \Delta C$$
Then

$$C = A \times B$$
a) First find the relative uncertainty of each factor, or the percentage relative
uncertainty, %:

$$Relative.Uncertainty = \frac{\Delta A}{A}$$
Or it may be expressed as a percentage

$$\% = \frac{\Delta A}{A} \times 100\%$$
b) Add the relative Uncertainties to give the relative uncertainty of C

$$\frac{\Delta C}{C} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$
c) Convert the Relative Uncertainty of C back to absolute uncertainty (by
multiplying by C)

$$\Delta C = (\frac{\Delta A}{A} + \frac{\Delta B}{B}) \times C$$
Multiply or divide the uncertainty by that number.
E.g.

$$(4.35 \pm 0.05) \times 10 = 43.5 \pm 0.5$$
Not: ONLY report uncertainties to I significant digit. Very important!
Examples: Right: 153.0 \pm 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 \pm 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0 ± 0.8
Right: 153.0

Practice Exercises

1. Change the following absolute uncertainties to relative (%) uncertainties.

a) $36.02 \pm 0.02 \text{ m}$

± 0.1 cm c) 17.83 ± 0.01 g d) 2.45 ± 0.01 kg 123.95 ± 0.05 L Convert the following percentage error to absolute error. a) 43.00 ± 0.2% b) 8.32 ±3% $1.098 \pm 0.1\%$ d) 15.5 ± 5

- 1. Propagate the error in the following calculations:
 - a) $12.2 \pm 0.3 + 15.5 \pm 0.5$

 $9.45 \pm 0.01 - 8.34 \pm 0.1$ c) $(5.5 \pm 0.5) \times (12.8 \pm 0.5)$ $(2.1 \pm 0.1) \times (1.5 \pm 0.1) \times (8.2 \pm 0.05)$ e) $(21 \pm 3) \times (12.5 \pm 0.7)$ f) $(100 \pm 1) \times (500 \pm 1)$

Problems:

1) Calculate the density given the following:

Mass = 1.23 ± 0.01 g V = 0.56 ± 0.05 cm³

Answer: 2.2 ± 0.2 g/cm³ 2) Calculate the density with the following dimensions: L= 3.42 ± 0.05 cm, W = 1.2 ± 0.2 cm, H = 54.85 ± 0.02 cm, mass = 153 ± 2 g Answer: $0.7 \pm 0.1 \text{ g/cm}^3$ 3) Calculate the concentration in g/L of a sodium chloride solution using the following data: mass of beaker + NaCl = 241.85 ± 0.01 g, mass of empty beaker = 159.23 ± 0.01 g, volume of water = 250. ± 1 mL

Answer: 330. ± 1 g/L

More practice problems, very exciting!

- 1. a) Determine the volume:
 - $L = 3.50 \pm 0.01 \text{cm}, \quad H = 3.53 \pm 0.01 \text{cm}, \quad W = 3.55 \pm 0.01 \text{cm}$

Answer: $43.9 \pm 0.9\%$ b) If the mass of the cube in 1(a) above is 125.52 ± 0.01 g, what is the density? Answer: 2.86±0.03g/cm^3 2. Calculate the density of an object which has the following measurements: Mass = 20.28 ± 0.02 g, volume = 24.01 ± 0.01 mL Answer: 0.845 ± 0.001 g/mL 3. Calculate the speed of an object if the distance travelled is 200.00±0.01m in 21.99 ± 0.01 s. (Recall: distance = speed x time) Answer: 9.10 ± 0.05 m/s A car travels at a speed of 100. \pm 5 km/hr for 3.2 \pm 0.1 hours. What is the distance travelled?

Answer: 320 ± 30 km

5. Calculate the quantity of heat absorbed, Q, by $250 \pm 5 mL$ of water, having an initial temperature of 32.0 ± 0.5 °C and a final temperature of 89.5 ± 0.5 °C.

Use specific heat capacity of water,
$$c = 4.18 \frac{f}{g^{2}C}$$
.
Use $Q = mc\Delta T$ $(\Delta T = T_{f} - T_{i})$
 $m = mass$
 $c = specific heat capacity$
 $(Answer: Q = 60.1 \pm 2.2 kJ)$
Calculate the number of moles, n , of sodium hydroxide, NaOH, given the
following data:
Mass of paper + mass of sodium hydroxide = $2.51 \pm 0.01 g$
Mass of paper = $0.06 \pm 0.01 g$
Molar mass of NaOH = $40.0 g mol^{-1}$
Use: $n^{\circ} moles$, $n = \frac{mass}{molar mass}$

(Answer: *n*^o *moles* = 0.613 ± 0.02 *moles*)

Division Problems: (Very Exciting!)

1. Complete the following, determining the appropriate uncertainty: a) $(12.02 \pm 0.08 \text{ cm}) \div (16 \text{ s} \pm 8 \text{ \%})$

