Review: Significant Figures, Error and Uncertainty

Propagating Error: Rules

1.Addition and Subtraction: Add absolute Uncertainties
 $(A \pm \Delta A) \pm(B \pm \Delta B)=(A \pm B) \pm(\Delta A+\Delta B)$

2. Multiplication and Division

For example

$$
(A \pm \Delta A) \times(B \pm \Delta B)=C \pm \Delta C
$$

Then

$$
C=A \times B
$$

a) First find the relative uncertainty of each factor, or the percentage relative uncertainty, \%:

$$
\text { Relative.Uncertainty }=\frac{\Delta A}{A}
$$

Or it may be expressed as a percentage

$$
\%=\frac{\Delta A}{A} \times 100 \%
$$

b) Add the relative Uncertainties to give the relative uncertainty of C

$$
\frac{\Delta C}{C}=\frac{\Delta A}{A}+\frac{\Delta B}{B}
$$

c) Convert the Relative Uncertainty of C back to absolute uncertainty (by multiplying by C)

$$
\Delta C=\left(\frac{\Delta A}{A}+\frac{\Delta B}{B}\right) \times C
$$

3.Multiplying or Dividing by a Pure Number

Multiply or divide the uncertainty by that number.
E.g.
$(4.35 \pm 0.05) \times 10=43.5 \pm 0.5$
Note: ONLY report uncertainties to $\underline{1}$ significant digit. Very important!

Examples: Right: 153.0 ± 0.8
Right: 150. ± 4
Also $(1.50 \pm 0.04) \times 10^{2}$

Wrong: 220 ± 0.1
Wrong: 220 ± 2.5

Wrong: 147 ± 10
Wrong: 556.854 ± 0.01

Practice Exercises

1. Change the following absolute uncertainties to relative (\%) uncertainties.
a) $36.02 \pm 0.02 \mathrm{~m}$
c) $17.83 \pm 0.01 \mathrm{~g}$

2. Convert the following percentage error to absolute error.
a) $43.00 \pm 0.2 \%$

d) 15.5 ± 5

Significant Figures, Error and Uncertainty

1. Propagate the error in the following calculations:
a) $12.2 \pm 0.3+15.5 \pm 0.5$

f) $(100 \pm 1) \times(500 \pm 1)$

Problems:

1) Calculate the density given the following:

$$
\text { Mass }=1.23 \pm 0.01 \mathrm{~g} \quad \mathrm{~V}=0.56 \pm 0.05 \mathrm{~cm}^{3}
$$

Answer: $2.2 \pm 0.2 \mathrm{~g} / \mathrm{cm}^{3}$
2) Calculate the density with the following dimensions:
$\mathrm{L}=3.42 \pm 0.05 \mathrm{~cm}, \quad \mathrm{~W}=1.2 \pm 0.2 \mathrm{~cm}, \mathrm{H}=54.85 \pm 0.02 \mathrm{~cm}, \quad$ mass $=153 \pm 2 \mathrm{~g}$

Answer: $0.7 \pm 0.1 \mathrm{~g} / \mathrm{cm}^{3}$
3) Calculate the concentration in g / L of a sodium chloride solution using the following data:
mass of beaker $+\mathrm{NaCl}=241.85 \pm 0.01 \mathrm{~g}$, mass of empty beaker $=159.23 \pm 0.01 \mathrm{~g}$,
volume of water $=250 . \pm 1 \mathrm{~mL}$

More practice problems, very exciting!

1. a) Determine the volume:
$\mathrm{L}=3.50 \pm 0.01 \mathrm{~cm}, \quad \mathrm{H}=3.53 \pm 0.01 \mathrm{~cm}, \quad \mathrm{~W}=3.55 \pm 0.01 \mathrm{~cm}$

Answer: $43.9 \pm 0.9 \%$
b) If the mass of the cube in 1 (a) above is $125.52 \pm 0.01 \mathrm{~g}$, what is the density?

Answer: $2.86 \pm 0.03 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$
Calculate the density of an object which has the following measurements:
Mass $=20.28 \pm 0.02 \mathrm{~g}, \quad$ volume $=24.01 \pm 0.01 \mathrm{~mL}$

Answer: $0.845 \pm 0.001 \mathrm{~g} / \mathrm{mL}$
3. Calculate the speed of an object if the distance travelled is $200.00 \pm 0.01 \mathrm{~m}$ in
21.99 ± 0.01 s. $($ Recall: distance $=$ speed x time $)$

Answer: $9.10 \pm 0.05 \mathrm{~m} / \mathrm{s}$
A car travels at a speed of $100 . \pm 5 \mathrm{~km} / \mathrm{hr}$ for 3.2 ± 0.1 hours. What is the distance travelled?
5. Calculate the quantity of heat absorbed, Q, by $250 \pm 5 m L$ of water, having an initial temperature of $32.0 \pm 0.5^{\circ} \mathrm{C}$ and a final temperature of $89.5 \pm 0.5^{\circ} \mathrm{C}$.

Use specific heat capacity of water, $c=4.18 \frac{f}{g^{\circ} \mathrm{C}}$.

Use $Q=m c \Delta T$

$$
\left(\Delta T=T_{f}-T_{i}\right)
$$

$m=$ mass
$c=$ specific heat capacity
(Answer: $Q=60.1 \pm 2.2 \mathrm{~kJ}$)
6. Calculate the number of moles, n, of sodium hydroxide, NaOH , given the
following data:
Mass of paper + mass of sodium hydroxide $=2.51 \pm 0.01 \mathrm{~g}$
Mass of paper $=0.06 \pm 0.01 \mathrm{~g}$
Molar mass of $\mathrm{NaOH}=40.0 \mathrm{~g} \mathrm{~mol}$
Use: n^{o} moles,$n=\frac{\text { mass }}{\text { molar mass }}$
(Answer: \boldsymbol{n}° moles $=0.613 \pm 0.02$ moles)

Division Problems: (Very Exciting!)

1. Complete the following, determining the appropriate uncertainty:
a) $(12.02 \pm 0.08 \mathrm{~cm}) \div(16 \mathrm{~s} \pm 8 \%)$

b) $(3.5 \mathrm{~cm} \pm 10 \%) \times(2.70 \pm 0.05 \mathrm{~cm}) \div(16 \mathrm{~s} \pm 8 \%)$
d) $(12.02 \pm 0.08 \mathrm{~cm})^{2}+(3.5 \mathrm{~cm} \pm 10 \%) \times(2.70 \pm 0.05 \mathrm{~cm})$
e) $[(3.5 \mathrm{~cm} \pm 10 \%)+(2.70 \pm 0.05 \mathrm{~cm})] /(16 \mathrm{~s} \pm 8 \%)$
f) $4 p^{2} /\left(0.034 \pm 0.004 \mathrm{~cm} / \mathrm{s}^{2}\right)$

2. Determine the perimeter and area of a rectangle of length $9.2 \pm 0.05 \mathrm{~cm}$ and width $4.33 \pm 0.01 \mathrm{~cm}$.

3. A block of wood measures $(12.0 \pm 0.5 \mathrm{~cm})$ by $(25.1 \pm 0.1 \mathrm{~cm})$ by $(62 \pm 1 \mathrm{~cm})$. If it has a mass of $(9.60 \mathrm{~kg} \pm 5 \%)$, what is its density?

Answers

1. a) $0.75 \mathrm{~cm} / \mathrm{s} \pm 9 \%=0.75 \pm 0.07 \mathrm{~cm} / \mathrm{s}$
b) $0.59 \mathrm{~cm} 2 / \mathrm{s} \pm 20 \%=0.59 \pm 0.12 \mathrm{~cm} 2 / \mathrm{s}=0.6 \pm 0.1 \mathrm{~cm} 2 / \mathrm{s}$
c) $41 \mathrm{~cm}^{2} \pm 10 \%=41 \pm 4 \mathrm{~cm}^{2}$
d) $154 \pm 3 \mathrm{~cm}^{2}$
e) either $0.39 \mathrm{~cm} / \mathrm{s} \pm 15 \%$ or $0.39 \mathrm{~cm} / \mathrm{s} \pm 20 \%$, and if you convert to absolute, you'll get
either $0.39 \pm 0.06 \mathrm{~cm} / \mathrm{s}$ or $0.39 \pm 0.08 \mathrm{~cm} / \mathrm{s}$, depending on when you did your rounding.
f) $1161.13 \mathrm{~cm} / \mathrm{s}^{2} \pm 10 \%=1200 \pm 100 \mathrm{~cm} / \mathrm{s}^{2}$
2. $\mathrm{P}=27.1 \pm 0.1 \mathrm{~cm}$
$A=39.8 \mathrm{~cm}^{2} \pm 0.8 \%=39.8 \pm 0.3 \mathrm{~cm}^{2}$ (use precision of uncertainty to decide on
precision of answer)
3. $m=9.60 \mathrm{~kg} \pm 5 \%$
$\mathrm{w}=12.0 \pm 0.5 \mathrm{~cm}=0.120 \mathrm{~m} \pm 4.2 \%$
$1=25.1 \pm 0.1 \mathrm{~cm}=0.251 \mathrm{~m} \pm 0.40 \%$
$h=62 \pm 1 \mathrm{~cm}=0.62 \mathrm{~m} \pm 1.6 \%$
$\mathrm{V}=\mathrm{l} w h$
$\mathrm{D}=\mathrm{m} / \mathrm{v}=\mathrm{m} / \mathrm{lwh}$
$\mathrm{D}=(9.60 \mathrm{~kg} \pm 5 \%) /(0.251 \mathrm{~m} \pm 0.40 \%)(0.120 \mathrm{~m} \pm 4.2 \%)(0.62 \mathrm{~m} \pm 1.6 \%)$
$\mathrm{D}=514 \mathrm{~kg} / \mathrm{m}^{3} \pm 11.2 \%$
$\mathrm{D}=514 \pm 57.5 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{D}=510 \pm 60 \mathrm{~kg} / \mathrm{m}^{3}$
