- 1. Explain what is meant by the rate law of a reaction.
- 2. What is meant by the order of a reaction?
- 3. What are the units for the rate constants of zero-order, first-order, and second-order reactions?
- 4. On which of the following properties does the rate constant of a reaction depend ? a. Reactant concentration, (b) nature of reactants, (c) temperature.
- 5. Determine the overall orders of the reactions to which the following rate laws apply: (a) rate = k $[NO_2]^2$, rate = k, (c) rate = k $[NO]^2 [O_2]$
- 6. Consider the reaction: A \longrightarrow B

The rate of the reaction is $1.6 \times 10^{-2} \text{ molL}^{-1}\text{s}^{-1}$ when the concentration of A is 0.35 mol L⁻¹. Calculate the rate constant if the reaction is (a) first order in A and (b) second order in A.

7. Consider the following data for the given reaction carried out at 300K.

 $2 \operatorname{NO}_{(g)} + \operatorname{Cl}_{2(g)} \longrightarrow 2 \operatorname{NOCl}_{(g)}$

Ex	periment	[NO] (mol/L)	[Cl ₂] (mol/L)	Rate (mol/LCs)
1		0.01	0.01	1.2 x 10 ⁻⁴
2		0.01	0.02	2.4 x 10 ⁻⁴
3		0.02	0.02	9.6 x 10 ⁻⁴

- a) Analyze the data to determine the values of the orders for this expression.
- **b**) What is the overall order of this reaction?
- c) What is the molecularity of this reaction?
- d) Use the data to determine the value of the rate constant, and state its units.
- e) Based on your findings, write the rate law expression with the correct value for k substituted into the equation.
- f) Use the rate law established above to determine the rate of the reaction at 300K, if the [NO] = 0.03 mol/L and the $[Cl_2] = 0.04 \text{ mol/L}$.
- g) What would be the overall rate of this reaction of the concentration of NO $_{(g)}$ was doubled and the concentration of Cl_{2 (g)} was halved ? (note: no calculation required !!!)

8. The following data were collected for the decomposition of dinitrogen pentoxide, $N_2O_{5(g)}$, at a fixed temperature.

$2 N_2 O_{5(g)}$	\longrightarrow	$4 \operatorname{NO}_{2(g)}$	+	$O_{2(g)}$

Experiment	[N ₂ O ₅] (mol/L)	Rate (mol/LCmin)	
1	0.0014	0.4 x 10 ⁻⁴	
2	0.0028	0.8 x 10 ⁻⁴	
3	0.0046	1.3 x 10 ⁻⁴	

- a) Analyze the data provided to determine the order of the reaction.
- **D**) **D**etermine the value of the rate constant for the reaction at this temperature.
- c) State the units of the rate constant for the reaction at this temperature.
- d) What would the reaction rate be for this reaction when the concentration of the dinitrogen pentoxide, $N_2O_{5(g)}$, is:

- i. 0.0019 mol/L ii. 0.0113 mol/L
- 9. The following data were obtained by studying the reaction between compounds A, B and C at a constant temperature.

Experiment	[A] (mol dm ⁻³)	[B] (mol dm ⁻³)	[C] (mol dm ⁻³)	Initial rate (mol dm ⁻³ s ⁻¹)
	0.20	0.10	0.40	0.80 x 10 ⁻³
2	0.20	0.40	0.40	3.20 x 10 ⁻³
3	0.10	0.80	0.40	1.60 x 10 ⁻³
4	0.10	0.30	0.20	0.60 x 10 ⁻³

- a. Deduce the order of the reaction with respect to A.
- b. **D**educe the order of the reaction with respect to B.
- c. Deduce the order of the reaction with respect to C.
- d. What is the rate law for the reaction?
- e. Calculate a value for the rate constant, k, and state its units.
- 10. The rate equation for the reaction between compounds D and E at a given temperature is :

Rate = $k [D]^2 [E]$

The initial rate of reaction is $8.36 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$ when the initial concentration of D is 0.84 mol dm⁻³ and the initial concentration of E is 1.16 mol dm⁻³. Calculate a value for the rate constant, k, at this temperature and deduce its units.